Problem 1
Beth M_{1} and M_{2} are in Saturation as $V_{G S}=V_{\Delta S}$

$$
\begin{aligned}
& \Rightarrow I_{\Delta 1}=I_{\Delta 2} \\
& \Rightarrow I_{\Delta 2}=\frac{100 \times 10^{-6}}{2} \times \frac{4}{2} \times\left(5-V_{\text {out }}-0.75\right)^{2} \\
& \Rightarrow I_{D_{1}}=\frac{100 \times 10^{-6}}{2} \times \frac{5}{2} \times\left(V_{\text {out }}-0-0.75\right)^{2} \\
& \Rightarrow 100 \times 10^{-6}\left(4.25-V_{\text {out }}\right)^{2}=1.25 \times 10^{-4}\left(V_{\text {out }}-0.75\right)^{2} \\
& \Rightarrow\left(4.25-V_{\text {out }}\right)^{2}=1.25\left(V_{\text {out }}-0.75\right)^{2} \\
& \quad 0.25 V_{\text {out }}^{2}+6.625 V_{\text {out }}-17.36=0 \\
& V_{\text {out }}=2.4 \mathrm{~V} \\
& \Rightarrow V_{\text {out }}=-28.9_{v} \\
& =\text { Thus, } V_{\text {out }}=28.4 \mathrm{~V}
\end{aligned}
$$

Problem 2

$$
\begin{aligned}
& I_{D 1}=\frac{\mu_{p} C_{O X} W_{1}}{2 L_{1}}\left(V_{G S 1}-V_{T H P}\right)^{2} \\
& I_{D 2}=\frac{\mu_{p} C_{O X} W_{2}}{2 L_{2}}\left(V_{G S 2}-V_{T H p}\right)^{2}
\end{aligned}
$$

Since $\mathrm{V}_{\mathrm{GS} 1}=\mathrm{V}_{\mathrm{G} 52}$, taking the ratio $\mathrm{I}_{\mathrm{D} 2} / \mathrm{D}_{\mathrm{D} 1}$, we obtain $\frac{I_{D 2}}{I_{D 1}}=\frac{W_{2}}{L_{2}} \frac{L_{1}}{W_{1}}=\frac{1}{4}$ so $\mathrm{I}_{\mathrm{D} 2}=150 \mathrm{uA}$
Problem 3

Since VBE1=VBE2, can write the two equations

$$
\begin{aligned}
& I_{I N}=I_{C 1}+I_{B 1}+I_{B 2}=J_{S} A_{E 1} e^{\frac{n V_{B E 1}}{V_{t}}}+J_{S} \frac{A_{E 1}}{\beta_{n}} e^{\frac{n V_{B E 1}}{V_{t}}}+J_{S} \frac{A_{E 2}}{\beta_{n}} e^{\frac{n V_{B E 1} V_{t}}{}} \\
& I_{O U T}=I_{C 2}=J_{S} A_{E 2} e^{\frac{n V_{B E 1}}{V_{t}}}
\end{aligned}
$$

Taking the ratio, the JS and exponential terms cancel and we obtain

$$
\frac{I_{O U T}}{I_{I N}}=\frac{A_{E 2}}{A_{E 1}+\frac{A_{E 1}}{\beta_{n}}+\frac{A_{E 2}}{\beta_{n}}}=\frac{600}{100+\frac{100+600}{100}}=5.61
$$

Since $\operatorname{IIN}=1 \mathrm{~mA}$, it follows tkhat $\mathrm{IOUT}=5.61 \mathrm{~mA}$

Problem 4.

Let $\mathrm{L} 1=\mathrm{L} 2=2 \mathrm{u}$ and $\mathrm{W} 1=\mathrm{W} 2=4 \mathrm{u}$

Problem 5.

Problem 6

Problem 7

Problem 8
a) Assuming $\mathrm{VBE}=0.6 \mathrm{~V}$, we obtain $I_{B}=\frac{9.4 \mathrm{~V}}{600 \mathrm{~K}}$. Thus $I_{C}=\beta I_{B}=100 \frac{9.4}{600 \mathrm{~K}}=1.57 \mathrm{~mA}$ and thus $V_{\text {OUT }}=10-I_{C} \bullet 2.5 \mathrm{~K}=6.1 \mathrm{~V}$
b) Replacing the $\beta=100$ with $\beta=50$ in part a) we obtain IC= 0.78 mA and VOUT=8.04V
c) The solution is independent of AE so the outputs will not change significantly
d) The solution is also independend of JS so the outputs will not change significantly

Problem 9

With the op amp being ideal, we can assume that there is no current flowing into either device input. This means that there is no current flowing through the $2 \mathrm{k} \Omega$ or the $4 \mathrm{k} \Omega$ resistor and thus $\mathbf{V 1 = 2 V}$.

Since $\mathrm{V} 1=2 \mathrm{~V}$, is follows that $\mathrm{ID}=\frac{5 v-2 v}{10000 \Omega}=0.3 m A$. Since the MOSFET is operating in saturation, it thus follows that

$$
\begin{gathered}
I_{D S}=\frac{\mu C_{o x} W}{2 L}\left(V_{G S}-V_{T}\right)^{2} \\
0.3 m A=\frac{\left(100 \frac{\mu A}{V^{2}}\right)(10 \mu m)}{2(2 \mu m)}\left(V_{G S}-0.75 \mathrm{~V}\right)^{2} \\
1.09545 \mathrm{~V}=V_{G S}-0.75 \mathrm{~V}
\end{gathered}
$$

This gives us a $V_{G S}=\mathbf{V}_{\mathbf{2}}=\mathbf{1 . 8 4 5 4 5 V}$. Note this solution satisfies both requirements for saturation $\left(V_{G S} \geq V_{T}, V_{D S} \geq V_{G S}-V_{T}\right)$.

Problem 10.
To keep M1 in saturation (since VGS $>$ VTH), must have VDS $>$ VGS-VTH. Substituting values into this equation we obtain $4 V-I_{D} R--2 V \geq 2 V-0.5 V$. This can be expressed as $R \leq \frac{4.5 V}{I_{D}}$. It remains to find ID. But $I_{D}=\frac{u_{n} C_{O X} W}{2 L}\left(V_{G S}-V_{T H}\right)^{2}$. Substituting in the model parameters given with $\mathrm{VGS}=2 \mathrm{~V}$, obtain ID $=0.1875 \mathrm{~mA}$. Thus $R \leq \frac{4.5 \mathrm{~V}}{0.1875 \mathrm{~mA}}=24 \mathrm{~K} \Omega$

